Python-Numpy

NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  • 一个强大的N维数组对象 ndarray
  • 广播功能函数
  • 整合 C/C++/Fortran 代码的工具
  • 线性代数、傅里叶变换、随机数生成等功能

NumPy Ndarray 对象

NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。ndarray 对象是用于存放同类型元素的多维数组。ndarray 中的每个元素在内存中都有相同存储大小的区域。

ndarray 内部由以下内容组成:

  • 一个指向数据(内存或内存映射文件中的一块数据)的指针。
  • 数据类型或 dtype,描述在数组中的固定大小值的格子。
  • 一个表示数组形状(shape)的元组,表示各维度大小的元组。
  • 一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要”跨过”的字节数。

ndarray 的内部结构: img

跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1]obj[:,::-1] 就是如此。

创建一个 ndarray 只需调用 NumPy 的 array 函数即可:

1
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)

参数说明:

名称 描述
object 数组或嵌套的数列
dtype 数组元素的数据类型,可选
copy 对象是否需要复制,可选
order 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认)
subok 默认返回一个与基类类型一致的数组
ndmin 指定生成数组的最小维度

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import numpy as np 
a = np.array([1,2,3])
print (a)

# 多于一个维度
b = np.array([[1, 2], [3, 4]])
print(b)

# 最小维度
c = np.array([1, 2, 3, 4, 5], ndmin = 2)
print(c)

# dtype 参数
d = np.array([1, 2, 3], dtype = complex)
print(d)

结果:

1676171303877

ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。内存块以行顺序(C样式)或列顺序(FORTRAN或MatLab风格,即前述的F样式)来保存元素。

NumPy 数据类型

numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。

名称 描述
bool_ 布尔型数据类型(True 或者 False)
int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
intc 与 C 的 int 类型一样,一般是 int32 或 int 64
intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
int8 字节(-128 to 127)
int16 整数(-32768 to 32767)
int32 整数(-2147483648 to 2147483647)
int64 整数(-9223372036854775808 to 9223372036854775807)
uint8 无符号整数(0 to 255)
uint16 无符号整数(0 to 65535)
uint32 无符号整数(0 to 4294967295)
uint64 无符号整数(0 to 18446744073709551615)
float_ float64 类型的简写
float16 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_ complex128 类型的简写,即 128 位复数
complex64 复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128 复数,表示双 64 位浮点数(实数部分和虚数部分)

numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。

数据类型对象 (dtype)

数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::

  • 数据的类型(整数,浮点数或者 Python 对象)
  • 数据的大小(例如, 整数使用多少个字节存储)
  • 数据的字节顺序(小端法或大端法)
  • 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
  • 如果数据类型是子数组,那么它的形状和数据类型是什么。

字节顺序是通过对数据类型预先设定 <> 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

dtype 对象是使用以下语法构造的:

1
numpy.dtype(object, align, copy)
  • object - 要转换为的数据类型对象
  • align - 如果为 true,填充字段使其类似 C 的结构体。
  • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用

实例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import numpy as np
# 使用标量类型
dt = np.dtype(np.int32)
print(dt)

# int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
dt = np.dtype('i4')
print(dt)

# 字节顺序标注
dt = np.dtype('<i4')
print(dt)

# 首先创建结构化数据类型
dt = np.dtype([('age',np.int8)])
print(dt)

# 将数据类型应用于 ndarray 对象
dt = np.dtype([('age',np.int8)])
a = np.array([(10,),(20,),(30,)], dtype = dt)
print(a)

# 类型字段名可以用于存取实际的 age 列
print(a['age'])

结果:

1676172186681

实例: 定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

1
2
3
4
5
import numpy as np
student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')])
a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)
print(student)
print(a)

结果:

1676172299266

每个内建类型都有一个唯一定义它的字符代码,如下:

字符 对应类型
b 布尔型
i (有符号) 整型
u 无符号整型 integer
f 浮点型
c 复数浮点型
m timedelta(时间间隔)
M datetime(日期时间)
O (Python) 对象
S, a (byte-)字符串
U Unicode
V 原始数据 (void)

NumPy 数组属性

NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。

在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。

NumPy 的数组中比较重要 ndarray 对象属性有:

属性 说明
ndarray.ndim 秩,即轴的数量或维度的数量
ndarray.shape 数组的维度,对于矩阵,n 行 m 列
ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值
ndarray.dtype ndarray 对象的元素类型
ndarray.itemsize ndarray 对象中每个元素的大小,以字节为单位
ndarray.flags ndarray 对象的内存信息
ndarray.real ndarray元素的实部
ndarray.imag ndarray 元素的虚部
ndarray.data 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

ndarray.ndim

ndarray.ndim 用于返回数组的维数,等于秩。

1
2
3
4
5
6
7
import numpy as np 

a = np.arange(24)
print (a.ndim) # a 现只有一个维度
# 现在调整其大小
b = a.reshape(2,4,3) # b 现在拥有三个维度
print (b.ndim)

结果:

1676186081199

ndarray.shape

ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示”行数”和”列数”。ndarray.shape 也可以用于调整数组大小。NumPy 也提供了 reshape 函数来调整数组大小。

1
2
3
4
5
6
7
import numpy as np  

a = np.array([[1,2,3],[4,5,6]])
print (a.shape)
# 调整数组大小
a.shape = (3,2)
print (a)

结果:

1676186105214

ndarray.itemsize

ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。

例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 item 属性为 4(32/8)。

1
2
3
4
5
6
7
8
9
import numpy as np 

# 数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)

# 数组的 dtype 现在为 float64(八个字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (y.itemsize)

结果:

1676186132826

ndarray.flags

ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:

属性 描述
C_CONTIGUOUS (C) 数据是在一个单一的C风格的连续段中
F_CONTIGUOUS (F) 数据是在一个单一的Fortran风格的连续段中
OWNDATA (O) 数组拥有它所使用的内存或从另一个对象中借用它
WRITEABLE (W) 数据区域可以被写入,将该值设置为 False,则数据为只读
ALIGNED (A) 数据和所有元素都适当地对齐到硬件上
UPDATEIFCOPY (U) 这个数组是其它数组的一个副本,当这个数组被释放时,原数组的内容将被更新

实例:

1
2
3
4
import numpy as np 

x = np.array([1,2,3,4,5])
print (x.flags)

结果:

1676186151388

NumPy 创建数组

ndarray 数组除了可以使用底层 ndarray 构造器来创建外,也可以通过以下几种方式来创建。

numpy.empty

numpy.empty 方法用来创建一个指定形状(shape)、数据类型(dtype)且未初始化的数组:

1
numpy.empty(shape, dtype = float, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order 有”C”和”F”两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

下面是一个创建空数组的实例:

1
2
3
import numpy as np 
x = np.empty([3,2], dtype = int)
print (x)

结果:

1676186184798

注意** − 数组元素为随机值,因为它们未初始化。

numpy.zeros

创建指定大小的数组,数组元素以 0 来填充:

1
numpy.zeros(shape, dtype = float, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组
1
2
3
4
5
6
7
8
9
10
11
12
13
import numpy as np

# 默认为浮点数
x = np.zeros(5)
print(x)

# 设置类型为整数
y = np.zeros((5,), dtype=int)
print(y)

# 自定义类型
z = np.zeros((2, 2), dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')])
print(z)

结果:

1676186265002

numpy.ones

创建指定形状的数组,数组元素以 1 来填充:

1
numpy.ones(shape, dtype = None, order = 'C')

参数说明:

参数 描述
shape 数组形状
dtype 数据类型,可选
order ‘C’ 用于 C 的行数组,或者 ‘F’ 用于 FORTRAN 的列数组
1
2
3
4
5
6
7
8
9
import numpy as np

# 默认为浮点数
x = np.ones(5)
print(x)

# 自定义类型
x = np.ones([2,2], dtype = int)
print(x)

结果:

1676186282866

NumPy 从已有的数组创建数组

numpy.asarray

numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。

1
numpy.asarray(a, dtype = None, order = None)

参数说明:

参数 描述
a 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
dtype 数据类型,可选
order 可选,有”C”和”F”两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np 

# 列表转换为ndarray
x = [1,2,3]
a = np.asarray(x)
print (a)

# 元组转换为 ndarray
x = (1,2,3)
a = np.asarray(x)
print (a)

# 将元组列表转换为 ndarray
x = [(1,2,3),(4,5)]
a = np.asarray(x)
print (a)

# 设置了 dtype 参数
x = [1,2,3]
a = np.asarray(x, dtype = float)
print (a)

结果:

1676261388906

numpy.frombuffer

numpy.frombuffer 用于实现动态数组。

numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

1
numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

参数说明:

参数 描述
buffer 可以是任意对象,会以流的形式读入。
dtype 返回数组的数据类型,可选
count 读取的数据数量,默认为-1,读取所有数据。
offset 读取的起始位置,默认为0。

实例:

1
2
3
4
5
import numpy as np 

s = b'Hello World'
a = np.frombuffer(s, dtype = 'S1')
print (a)

结果:

1676261485390

numpy.fromiter

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

1
numpy.fromiter(iterable, dtype, count=-1)
参数 描述
iterable 可迭代对象
dtype 返回数组的数据类型
count 读取的数据数量,默认为-1,读取所有数据
1
2
3
4
5
6
7
8
9
import numpy as np 

# 使用 range 函数创建列表对象
list=range(5)
it=iter(list)

# 使用迭代器创建 ndarray
x=np.fromiter(it, dtype=float)
print(x)

结果:

1676261553559

NumPy 从数值范围创建数组

numpy.arange

numpy 包中的使用 arange 函数创建数值范围并返回 ndarray 对象,函数格式如下:

1
numpy.arange(start, stop, step, dtype)

根据 start 与 stop 指定的范围以及 step 设定的步长,生成一个 ndarray。

参数说明:

参数 描述
start 起始值,默认为0
stop 终止值(不包含)
step 步长,默认为1
dtype 返回ndarray的数据类型,如果没有提供,则会使用输入数据的类型。

numpy.linspace

numpy.linspace 函数用于创建一个一维数组,数组是一个等差数列构成的,格式如下:

1
np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

参数说明:

参数 描述
start 序列的起始值
stop 序列的终止值,如果endpointtrue,该值包含于数列中
num 要生成的等步长的样本数量,默认为50
endpoint 该值为 true 时,数列中包含stop值,反之不包含,默认是True。
retstep 如果为 True 时,生成的数组中会显示间距,反之不显示。
dtype ndarray 的数据类型

numpy.logspace

numpy.logspace 函数用于创建一个于等比数列。格式如下:

1
np.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)

base 参数意思是取对数的时候 log 的下标。

参数 描述
start 序列的起始值为:base ** start
stop 序列的终止值为:base ** stop。如果endpointtrue,该值包含于数列中
num 要生成的等步长的样本数量,默认为50
endpoint 该值为 true 时,数列中中包含stop值,反之不包含,默认是True。
base 对数 log 的底数。
dtype ndarray 的数据类型

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

实例:

1
2
3
4
5
import numpy as np

a = np.arange(10)
s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2
print (a[s])

结果:

1676276443367

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:

1
b = a[2:7:2]   # 从索引 2 开始到索引 7 停止,间隔为 2

冒号 : 的解释:如果只放置一个参数,如 **[2]**,将返回与该索引相对应的单个元素。如果为 **[2:]**,表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 **[2:7]**,那么则提取两个索引(不包括停止索引)之间的项。

多维数组同样适用上述索引提取方法:

1
2
3
4
5
6
7
import numpy as np

a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print(a)
# 从某个索引处开始切割
print('从数组索引 a[1:] 处开始切割')
print(a[1:])

结果:

1676276535398

切片还可以包括省略号 ,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

实例:

1
2
3
4
5
6
import numpy as np

a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print (a[...,1]) # 第2列元素
print (a[1,...]) # 第2行元素
print (a[...,1:]) # 第2列及剩下的所有元素

结果:

1676276606297

NumPy 广播(Broadcast)

广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对数组的算术运算通常在相应的元素上进行。

如果两个数组 a 和 b 形状相同,即满足 a.shape == b.shape,那么 a*b 的结果就是 a 与 b 数组对应位相乘。这要求维数相同,且各维度的长度相同。